The Hankel Determinant of Exponential Polynomials: A Very Short Proof and a New Result Concerning Euler Numbers

نویسنده

  • Christian Radoux
چکیده

NOTES Warren P. Johnson Combinatorics of Higher Derivatives 273 of Inverses Christian Radoux The Hankel Determinant of Exponential 277 Polynomials: A Very Short Proof and a New Result Concerning Euler Numbers Karl Dilcher Dedekind Sums and Uniform Distributions 279 Kurt Girstmair Robbert Fokkink R3 Has No Root 285 THE EVOLUTION OF... John Stillwell The Continuum Problem 286 PROBLEMS AND 298 SOLUTIONS REVIEWS Judith Grabiner Oxford Figures: 800 Years of the 306 Mathematical Sciences. Edited by John Fauvel, Raymond Flood, and Robin Wilson TELEGRAPHIC 310 REVIEWS EDITOR’S 313 ENDNOTES

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hankel Determinants of Some Sequences of Polynomials

Ehrenborg gave a combinatorial proof of Radoux’s theorem which states that the determinant of the (n + 1)× (n + 1) dimensional Hankel matrix of exponential polynomials is x ∏n i=0 i!. This proof also shows the result that the (n + 1) × (n + 1) Hankel matrix of factorial numbers is ∏n k=1(k!) . We observe that two polynomial generalizations of factorial numbers also have interesting determinant ...

متن کامل

A Note on Three Families of Orthogonal Polynomials defined by Circular Functions, and Their Moment Sequences

Using the language of exponential Riordan arrays, we study three distinct families of orthogonal polynomials defined by trigonometric functions. We study the moment sequences of theses families, finding continued fraction expressions for their generating functions, and calculate the Hankel transforms of these moment sequences. Results related to the Euler or zigzag numbers, as well as the gener...

متن کامل

A Note on a Theorem of Schumacher

In this paper, we give a short new proof of a recent result due to Schumacher concerning an extension of Faulhaber’s identity for the Bernoulli numbers. Our approach follows from basic manipulations involving the ordinary generating function for the Bernoulli polynomials in the context of the Zeon algebra.

متن کامل

Viewing Some Ordinary Differential Equations from the Angle of Derivative Polynomials

In the paper, the authors view some ordinary differential equations and their solutions from the angle of (the generalized) derivative polynomials and simplify some known identities for the Bernoulli numbers and polynomials, the Frobenius-Euler polynomials, the Euler numbers and polynomials, in terms of the Stirling numbers of the first and second kinds.

متن کامل

The Hankel Determinant of Exponential Polynomials

The purpose of this note is two-fold. First we present evaluations of Hankel determinants of sequences of combinatorial interest related to partitions and permutations. Many such computations have been carried out by Radoux in his sequence of papers [2]–[5]. His proof methods include using a functional identity due to Sylvester and factoring the Hankel matrix. Second, unlike Radoux, we instead ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The American Mathematical Monthly

دوره 109  شماره 

صفحات  -

تاریخ انتشار 2002